Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine
Don Ganem
Don Ganem
View: Text | PDF
Science in Medicine

KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine

  • Text
  • PDF
Abstract

The linkage of Kaposi sarcoma (KS) to infection by a novel human herpesvirus (Kaposi sarcoma–associated herpesvirus [KSHV]) is one of the great successes of contemporary biomedical research and was achieved by using advanced genomic technologies in a manner informed by a nuanced understanding of epidemiology and clinical investigation. Ongoing efforts to understand the molecular mechanisms by which KSHV infection predisposes to KS continue to be powerfully influenced by insights emanating from the clinic. Here, recent developments in KS pathogenesis are reviewed, with particular emphasis on clinical, pathologic, and molecular observations that highlight the many differences between this process and tumorigenesis by other oncogenic viruses.

Authors

Don Ganem

×

Figure 4

Structure of transcripts from the major latency locus of KSHV.

Options: View larger image (or click on image) Download as PowerPoint
Structure of transcripts from the major latency locus of KSHV.
Top panel...
Top panel: Disposition of ORFs in the latency cluster. ORF-73 encodes LANA; ORF-72 encodes v-cyclin (v-CYC); ORF-71 encodes v-FLIP; ORF-K12 encodes kaposin A; DRs 1 and 2 encode direct repeats in which translation of kaposins B and C initiate. LIR, long interspersed repeats. Middle panel: KSHV microRNA (miR) cluster, with pre-miRNAs indicated by arrowheads. Bottom panels: Structures of transcripts directed by the kaposin (or LTd) promoter and by the LANA (or LTc) promoter. Figure modified with permission from RNA (101).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts