Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Expression of human BRCA1 variants in mouse ES cells allows functional analysis of BRCA1 mutations
Suhwan Chang, Kajal Biswas, Betty K. Martin, Stacey Stauffer, Shyam K. Sharan
Suhwan Chang, Kajal Biswas, Betty K. Martin, Stacey Stauffer, Shyam K. Sharan
View: Text | PDF
Technical Advance

Expression of human BRCA1 variants in mouse ES cells allows functional analysis of BRCA1 mutations

  • Text
  • PDF
Abstract

To date, inheritance of a mutant BRCA1 or BRCA2 gene is the best-established indicator of an increased risk of developing breast cancer. Sequence analysis of these genes is being used to identify BRCA1/2 mutation carriers, though these efforts are hampered by the high frequency of variants of unknown clinical significance (VUSs). Functional evaluation of such variants has been restricted due to lack of a physiologically relevant assay. In this study we developed a functional assay using mouse ES cells to study variants of BRCA1. We introduced BAC clones with human wild-type BRCA1 or variants into Brca1-null ES cells and confirmed that only wild-type and a known neutral variant rescued cell lethality. The same neutral variant was also able to rescue embryogenesis in Brca1-null mice. A test of several BRCT domain mutants revealed all to be deleterious, including a VUS. Furthermore, we used this assay to determine the effects of BRCA1 variants on cell cycle regulation, differentiation, and genomic stability. Importantly, we discovered that ES cells rescued by S1497A BRCA1 exhibited significant hypersensitivity after γ-irradiation. Our results demonstrate that this ES cell–based assay is a powerful and reliable method for analyzing the functional impact of BRCA1 variants, which we believe could be used to determine which patients may require preventative treatments.

Authors

Suhwan Chang, Kajal Biswas, Betty K. Martin, Stacey Stauffer, Shyam K. Sharan

×

Figure 3

Functional evaluation of BRCT domain variants of BRCA1.

Options: View larger image (or click on image) Download as PowerPoint
Functional evaluation of BRCT domain variants of BRCA1.
(A) A1708E, R173...
(A) A1708E, R1737X, and V1804D BRCA1 variants were analyzed by ChIP to test their binding to Gadd45a and p21 promoters. Wild-type human BRCA1 was used as positive control. Binding of p53 to the p21 promoter was used as an internal control. Quantitation of ChIP-PCR products is shown in the graph. (B) Methylene blue staining of HAT-resistant ES cell colonies with no BAC (PL2F8), WT BRCA1, and A1708E, R1737X, and V1804D variants of BRCA1. (C) Southern blot analysis of HAT-resistant ES cell clones reveals that none of the clones expressing deleterious BRCA1 variants (A1708E, R1737X, V1804D) lost the conditional allele (upper band). Half of clones rescued with WT BRCA1 retained only the mutant band (lower band). (D) Whole mount of Brca1KO/KOBACTgA1708E embryo at E7.5 shows retarded development, similar to the phenotype of Brca1KO/KO embryos at this stage. Brca1+/+ control littermates with or without the A1708E transgene show normal development at E7.5.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts