Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation
Dominik Paquet, … , Bettina Schmid, Christian Haass
Dominik Paquet, … , Bettina Schmid, Christian Haass
Published April 13, 2009
Citation Information: J Clin Invest. 2009;119(5):1382-1395. https://doi.org/10.1172/JCI37537.
View: Text | PDF
Technical Advance Neuroscience

A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation

  • Text
  • PDF
Abstract

Our aging society is confronted with a dramatic increase of patients suffering from tauopathies, which include Alzheimer disease and certain frontotemporal dementias. These disorders are characterized by typical neuropathological lesions including hyperphosphorylation and subsequent aggregation of TAU protein and neuronal cell death. Currently, no mechanism-based cures are available. We generated fluorescently labeled TAU transgenic zebrafish, which rapidly recapitulated key pathological features of tauopathies, including phosphorylation and conformational changes of human TAU protein, tangle formation, neuronal and behavioral disturbances, and cell death. Due to their optical transparency and small size, zebrafish larvae are well suited for both in vivo imaging and drug development. TAU-induced neuronal cell death was imaged by time-lapse microscopy in vivo. Furthermore, we used this zebrafish model to identify compounds targeting the TAU kinase glycogen synthase kinase 3β (GSK3β). We identified a newly developed highly active GSK3β inhibitor, AR-534, by rational drug design. AR-534 reduced TAU phosphorylation in TAU transgenic zebrafish. This transgenic zebrafish model may become a valuable tool for further studies of the neuropathology of dementia.

Authors

Dominik Paquet, Ratan Bhat, Astrid Sydow, Eva-Maria Mandelkow, Stefan Berg, Sven Hellberg, Johanna Fälting, Martin Distel, Reinhard W. Köster, Bettina Schmid, Christian Haass

×

Figure 4

In vivo imaging of neuronal cell death in TAU-expressing zebrafish.

Options: View larger image (or click on image) Download as PowerPoint
In vivo imaging of neuronal cell death in TAU-expressing zebrafish.
(A–D...
(A–D) Side views of 6-day-old living zebrafish larvae expressing TAU/DsRed (A, see single acridine orange–positive neuron in inset, depicted by arrowhead), only DsRed (B), or no transgene (siblings, C) stained with acridine orange. TAU-expressing fish show substantial cell death while DsRed-expressing and nontransgenic fish show only a low, basal amount of dying cells (quantified in D). AO, acridine orange. Data represent mean ± SD. ***P < 0.01. Scale bars: 100 μm; 10 μm (insets). (E) Still images of several time points of a time-lapse video, showing a close-up of TAU-expressing neurons in the spinal cord of transgenic zebrafish, which were stained with acridine orange. An intact neuron (white arrowhead) with an axon first changes its shape and rounds up. Subsequently, fragmentation and uptake of acridine orange is observed (yellow arrowhead; see also Supplemental Video 1). Scale bars: 10 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts