Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice
Adam D. Judge, … , Kevin McClintock, Ian MacLachlan
Adam D. Judge, … , Kevin McClintock, Ian MacLachlan
Published February 23, 2009
Citation Information: J Clin Invest. 2009;119(3):661-673. https://doi.org/10.1172/JCI37515.
View: Text | PDF
Technical Advance

Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice

  • Text
  • PDF
Abstract

siRNAs that specifically silence the expression of cancer-related genes offer a therapeutic approach in oncology. However, it remains critical to determine the true mechanism of their therapeutic effects. Here, we describe the preclinical development of chemically modified siRNA targeting the essential cell-cycle proteins polo-like kinase 1 (PLK1) and kinesin spindle protein (KSP) in mice. siRNA formulated in stable nucleic acid lipid particles (SNALP) displayed potent antitumor efficacy in both hepatic and subcutaneous tumor models. This was correlated with target gene silencing following a single intravenous administration that was sufficient to cause extensive mitotic disruption and tumor cell apoptosis. Our siRNA formulations induced no measurable immune response, minimizing the potential for nonspecific effects. Additionally, RNAi-specific mRNA cleavage products were found in tumor cells, and their presence correlated with the duration of target mRNA silencing. Histological biomarkers confirmed that RNAi-mediated gene silencing effectively inhibited the target’s biological activity. This report supports an RNAi-mediated mechanism of action for siRNA antitumor effects, suggesting a new methodology for targeting other key genes in cancer development with siRNA-based therapeutics.

Authors

Adam D. Judge, Marjorie Robbins, Iran Tavakoli, Jasna Levi, Lina Hu, Anna Fronda, Ellen Ambegia, Kevin McClintock, Ian MacLachlan

×

Figure 4

Therapeutic activity of PLK1 and KSP siRNA in hepatic tumors.

Options: View larger image (or click on image) Download as PowerPoint
Therapeutic activity of PLK1 and KSP siRNA in hepatic tumors.
PLK1424-2/...
PLK1424-2/A treatment confers significant survival advantages in SCID/beige mice bearing hepatic Hep3B tumors. Mice were administered SNALP-formulated PLK1424-2/A (n = 15) or LUC-U/U (n = 8) at 6 × 2 mg/kg i.v. twice weekly (day 10 to day 28). (A) Body weights (mean + SD) over the dosing period expressed as percentage of initial weight on day 10. (B) Kaplan-Meier plot of days to euthanization due to tumor burden. PLK1424-2/A treatment provided significant survival advantage over control treatment. (P = 0.03, log-rank Cox-Mantel test). (C) Residual hepatic Hep3B tumor burden in mice 24 hours after final administration of PLK1424-2/A siRNA (5 × 2 mg/kg siRNA on days 8, 11, 14, 18, and 21). Bars represent hGAPDH mRNA/mg liver of individual mice (mean ± SD of triplicate analyses) determined by human-specific bDNA assay. No tumor, livers from non–tumor-seeded mice. See Supplemental Figure 6 for additional data. (D) KSP2263-U/U treatment confers survival advantages in A/J mice bearing hepatic Neuro2a tumors. Mice were administered SNALP-formulated KSP2263-U/U or LUC-U/U (n = 8) at 5 × 4 mg/kg i.v. (q3d ×5 from day 8 to day 21 after tumor seeding). Kaplan-Meier plot of days to euthanization due to tumor burden. End points are based on clinical scores as a humane surrogate for survival. Mean SNALP particle sizes were 83 (0.09 polydispersity), and 90 (0.12 polydispersity) nm for PLK1424-2/A and LUC-U/U formulations, respectively.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts