Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Platelet adhesion: a game of catch and release
Robert K. Andrews, Michael C. Berndt
Robert K. Andrews, Michael C. Berndt
Published August 21, 2008
Citation Information: J Clin Invest. 2008;118(9):3009-3011. https://doi.org/10.1172/JCI36883.
View: Text | PDF
Commentary

Platelet adhesion: a game of catch and release

  • Text
  • PDF
Abstract

The interaction of circulating platelets with the vessel wall involves a process of cell catch and release, regulating cell rolling, skipping, or firm adhesion and leading to thrombus formation in flowing blood. In this regard, the interaction of platelet glycoprotein Ibα (GPIbα) with its adhesive ligand, vWF, is activated by shear force and critical for platelet adhesion to the vessel wall. In this issue of the JCI, Yago and colleagues show how gain-of-function mutations in the GPIbα-binding vWF A1 domain disrupt intramolecular interactions within WT vWF A1 that regulate binding to GPIbα and flow-enhanced platelet rolling and adhesion (see the related article beginning on page 3195). Together, these studies reveal molecular mechanisms regulating GPIbα-vWF bond formation and platelet adhesion under shear stress.

Authors

Robert K. Andrews, Michael C. Berndt

×

Figure 1

vWF-dependent platelet adhesion at high shear.

Options: View larger image (or click on image) Download as PowerPoint
vWF-dependent platelet adhesion at high shear.
GPIb–IX-V–dependent adhes...
GPIb–IX-V–dependent adhesion of human platelets to multimeric vWF on the vessel wall — initiating thrombus formation — involves GPIbα binding vWF A1, a conformationally activated domain of vWF. In their study in this issue of the JCI, Yago et al. (8) show how shear force disrupts vWF A1 electrostatic interactions of D1269 with R1306 and R1450, reorientating vWF A1 relative to receptor and aligning R1334 of vWF to interact with E14 on GPIbα, facilitating adhesion under flow (red and blue circles denote negatively and positively charged residues, respectively; see ref. 8 for structures). The authors show that vWD type 2B mutations (R1306Q or R1450E) constitutively disrupt interactions with D1269, enhancing binding to GPIbα, as well as promoting ADAMTS-13–dependent cleavage within vWF A2. These findings explain how these vWD mutations lead to enhanced vWF binding to platelet GPIbα and depletion of vWF associated with type 2B vWD. In WT vWF, the shear-induced changes in the binding interaction between vWF and GPIbα show how platelet adhesion is enhanced under the influence of shear force and how thrombus formation can be initiated at the vessel wall in flowing blood.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts