Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Endocrine functions of bone in mineral metabolism regulation
L. Darryl Quarles
L. Darryl Quarles
Published December 1, 2008
Citation Information: J Clin Invest. 2008;118(12):3820-3828. https://doi.org/10.1172/JCI36479.
View: Text | PDF | Corrigendum
Science in Medicine

Endocrine functions of bone in mineral metabolism regulation

  • Text
  • PDF
Abstract

Given the dramatic increase in skeletal size during growth, the need to preserve skeletal mass during adulthood, and the large capacity of bone to store calcium and phosphate, juxtaposed with the essential role of phosphate in energy metabolism and the adverse effects of hyperphosphatemia, it is not surprising that a complex systems biology has evolved that permits cross-talk between bone and other organs to adjust phosphate balance and bone mineralization in response to changing physiological requirements. This review examines the newly discovered signaling pathways involved in the endocrine functions of bone, such as those mediated by the phosphaturic and 1,25(OH)2D-regulating hormone FGF23, and the broader systemic effects associated with abnormalities of calcium and phosphate homeostasis.

Authors

L. Darryl Quarles

×

Figure 1

Interrelationships among FGF23, PTH, 1,25(OH)2D, and Klotho.

Options: View larger image (or click on image) Download as PowerPoint
Interrelationships among FGF23, PTH, 1,25(OH)2D, and Klotho.
   
(A) The...
(A) The PTH/1,25(OH)2D axis. The principal function of the PTH/1,25(OH)2D axis is to regulate calcium homeostasis. Decrements in serum calcium levels stimulate PTH secretion by the PTG, which targets the kidney to reduce urinary calcium excretion, stimulate 1α-hydroxylase activity, and enhance the fractional excretion of phosphate (PO4), and targets bone to increase the efflux of calcium and phosphate. The resulting increase in 1,25(OH)2D targets the gastrointestinal tract to increase dietary absorption of calcium, which suppresses PTH. (B) The FGF23/Klotho axis. FGF23 produced by bone principally targets the kidney, leading to reductions in serum phosphate and 1,25(OH)2D levels by stimulating the fractional excretion of phosphate and reducing 1α-hydroxylase activity. The receptor for FGF23 in the kidney is a Klotho:FGFR1 complex located in the distal tubule. There may be a distal-to-proximal feedback mechanism that mediates the effects of FGF23 on the proximal tubule. FGF23 also decreases the kidney expression of Klotho, which diminishes renal tubular calcium reabsorption via its interactions with transient receptor potential cation channel, subfamily V, member 5 (TRPV5). FGF23 may also directly target the PTG to reduce PTH secretion. FGF23 is the principal phosphaturic hormone and may function to counter the hypercalcemic and hyperphosphatemic effects of excess 1,25(OH)2D through reductions in PTH and elevations in FGF23 levels.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts