Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Measles virus breaks through epithelial cell barriers to achieve transmission
Makoto Takeda
Makoto Takeda
Published June 20, 2008
Citation Information: J Clin Invest. 2008;118(7):2386-2389. https://doi.org/10.1172/JCI36251.
View: Text | PDF
Commentary

Measles virus breaks through epithelial cell barriers to achieve transmission

  • Text
  • PDF
Abstract

Measles is a highly contagious disease that causes immunosuppression in patients. Measles virus infection has been thought to begin in the respiratory epithelium and then spread to lymphoid tissue. In this issue of the JCI, Leonard et al. provide data to suggest an alternative model of measles virus pathogenesis (see the related article beginning on page 2448). In human primary epithelial cells and rhesus monkeys in vivo, the authors show that initial infection of respiratory epithelium is not necessary for the virus to enter the host but that viral entry into epithelial cells via interaction of the virus with a receptor located on the basolateral side of the epithelium is required for viral shedding into the airway and subsequent transmission.

Authors

Makoto Takeda

×

Figure 1

Schema of the MV particle and its receptor-binding H protein.

Options: View larger image (or click on image) Download as PowerPoint
Schema of the MV particle and its receptor-binding H protein.
MV is an e...
MV is an enveloped virus and possesses 2 types of glycoprotein spikes, designated H and F proteins. The F protein mediates membrane fusion between the viral envelope and the host cell plasma membrane, while the H protein that forms homodimers on the viral envelope is responsible for binding of virus to receptors on target cells. The head domain of the H protein exhibits a six-bladed β-propeller fold. Residues important for using SLAM as a receptor map to a localized area of the β5 sheet, forming a putative SLAM-binding site (shown in blue). On the other hand, relevant residues for epithelial cell infection map to a small area in the β5 and β4 sheets, forming another putative receptor-binding site (yellow) that is essentially distinct from the SLAM-binding site.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts