Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

A skewed view of X chromosome inactivation
Jakub Minks, … , Wendy P. Robinson, Carolyn J. Brown
Jakub Minks, … , Wendy P. Robinson, Carolyn J. Brown
Published December 20, 2007
Citation Information: J Clin Invest. 2008;118(1):20-23. https://doi.org/10.1172/JCI34470.
View: Text | PDF
Commentary

A skewed view of X chromosome inactivation

  • Text
  • PDF
Abstract

X chromosome inactivation involves a random choice to silence either X chromosome early in mammalian female development. Once silenced the inactive X is stably inherited through subsequent somatic cell divisions, and thus, females are generally mosaics, having a mixture of cells with one or the other parental X active. While in most females the number of cells with either X being active is roughly equal, skewing of X chromosome inactivation is observed in a percentage of women. In this issue of the JCI, Bolduc and colleagues address whether skewing of X chromosome inactivation in humans is influenced by an X-linked locus that can alter this initial random inactivation (see the related article beginning on page 333). Their data indicate that most of the skewing observed in humans results from secondary events rather than being due to an inherited tendency to inactivate a particular X chromosome.

Authors

Jakub Minks, Wendy P. Robinson, Carolyn J. Brown

×

Usage data is cumulative from July 2021 through July 2022.

Usage JCI PMC
Text version 861 491
PDF 60 63
Figure 162 4
Table 22 0
Citation downloads 46 0
Totals 1,151 558
Total Views 1,709
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts