Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Deepening our understanding of immune sentinels in the skin
Frank O. Nestle, Brian J. Nickoloff
Frank O. Nestle, Brian J. Nickoloff
Published September 4, 2007
Citation Information: J Clin Invest. 2007;117(9):2382-2385. https://doi.org/10.1172/JCI33349.
View: Text | PDF
Commentary

Deepening our understanding of immune sentinels in the skin

  • Text
  • PDF
Abstract

Advances in our understanding of the skin immune system have a major impact on studies of skin autoimmunity, graft-versus-host disease, inflammation, and cancer as well as on the development of novel vaccines and immunotherapy approaches. In this issue of the JCI, Zaba et al. carefully dissected the complex network of DCs and macrophages residing in normal human skin and defined novel phenotypic markers for these immunocytes (see the related article beginning on page 2517). These studies provide the basis for better insight into the role of important immune sentinels contributing to the maintenance of skin tissue homeostasis and lay the foundation for future studies of the skin immune system.

Authors

Frank O. Nestle, Brian J. Nickoloff

×

Figure 1

Normal human skin is characterized by an impressive diversity of immune sentinels.

Options: View larger image (or click on image) Download as PowerPoint
Normal human skin is characterized by an impressive diversity of immune ...
Skin-based DCs and macrophages sense invading pathogens and serve as sentinels, thereby alerting effectors of the innate and adaptive immune systems to potential danger to the host. Subsets of immune sentinels include CD1a+Langerin+ LCs located in the epidermis and various subtypes of DCs and macrophages in the dermis. In this issue of the JCI, Zaba et al. (17) used mixed leukocyte assay to identify BDCA-1+ DDCs as the major immunostimulatory population in normal human skin. In addition, they found that the mononuclear cells expressing CD163 were less immunostimulatory, but possessed greater phagocytic activity and morphological features of macrophages. These recent morphological, immunophenotypic, and functional findings complement previous studies that defined additional mononuclear subsets including: PDCs, which are relatively rare in normal skin but are capable of producing type I IFNs and express BDCA-2, IL-3 receptor α (IL-3Rα), and CD45RA; CD14+ DDCs, which may develop into LCs under the influence of TGF-β; TNF- and iNOS-producing DCs (TIP-DC), characterized by their production of TNF-α and iNOS; and various macrophage subsets. Currently the macrophage population expressing CD68 and CD14 can be further subdivided into classically activated macrophages (M1), developing under the influence of LPS and IFN-γ, and alternatively activated macrophages (M2), developing under the influence of IL-4 and IL-10. The M1 type macrophage expresses CD16, CD32, and CD64, whereas the M2 type macrophage expresses CD163, FXIIIa, MR, and the marker RM3/1 as previously described (15). Circular arrows indicate the self-renewing potential of LCs and DDCs under conditions of tissue homeostasis. Moreover, circulating blood-derived monocytes are potential precursors of LCs, DDCs, and macrophages, especially under inflammatory conditions.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts