Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Low-molecular-weight S-nitrosothiols and blood vessel injury
Philip A. Marsden
Philip A. Marsden
View: Text | PDF
Commentary

Low-molecular-weight S-nitrosothiols and blood vessel injury

  • Text
  • PDF
Abstract

S-nitrosothiol signaling reactions are argued to play key modulatory roles in mediating the actions of NOS in health and disease. A report by Palmer et al. in this issue of the JCI provides new insight into the in vivo biology of S-nitrosothiols (see the related article beginning on page 2592). The authors examine the chronic effects of exogenous nitrosothiol therapy and demonstrate that the commonly used antioxidant N-acetylcysteine (NAC) induces pulmonary arterial hypertension in mice. Importantly, the authors argue that the vascular pathology they observe in the lungs of these animals is functionally and morphologically equivalent to that observed in chronic hypoxia. These findings raise the concern that chronic NAC therapy may induce similar vascular pathology in patients.

Authors

Philip A. Marsden

×

Figure 1

S-nitrosothiols and the Hb O2 cycle.

Options: View larger image (or click on image) Download as PowerPoint

S-nitrosothiols and the Hb O2 cycle.
               
The synthesis of S...
The synthesis of SNO-Hb is favored in the highly oxygenated R structure of tetrameric Hb. SNO-Cysβ93 is buried deep within oxygenated Hb. SNO-Hb transports NO to the microcirculation. Less than 1% of Hb carries NO. With a switch in Hb to the deoxygenated T structure when O2 concentrations fall, the S-nitrosothiol group is exposed and transferred to other thiol acceptors. NAC can serve as a pharmacological bait and forms SNOAC.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts