Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Prime suspect: the TCF7L2 gene and type 2 diabetes risk
Andrew T. Hattersley
Andrew T. Hattersley
Published August 1, 2007
Citation Information: J Clin Invest. 2007;117(8):2077-2079. https://doi.org/10.1172/JCI33077.
View: Text | PDF
Commentary

Prime suspect: the TCF7L2 gene and type 2 diabetes risk

  • Text
  • PDF
Abstract

Transcription factor-7–like 2 (TCF7L2) is the most important type 2 diabetes susceptibility gene identified to date, with common intronic variants strongly associated with diabetes in all major racial groups. This ubiquitous transcription factor in the Wnt signaling pathway was not previously known to be involved in glucose homeostasis, so defining the underlying mechanism(s) will provide new insights into diabetes. In this issue of the JCI, Lyssenko and colleagues report on their human and isolated islet studies and suggest that the risk allele increases TCF7L2 expression in the pancreatic β cell, reducing insulin secretion and hence predisposing the individual to diabetes (see the related article beginning on page 2155).

Authors

Andrew T. Hattersley

×

Figure 1

From genetic association to pathophysiology in TCF7L2 genotypes predisposing to type 2 diabetes.

Options: View larger image (or click on image) Download as PowerPoint
From genetic association to pathophysiology in TCF7L2 genotypes predispo...
Diagram of proposed pathophysiological pathway explaining how TCF7L2 risk genotypes predispose to type 2 diabetes. The risk genotype results in overexpression of TCF7L2 in pancreatic β cells, which in turn results in reduced insulin secretion. Reduced insulin secretion results in a predisposition to type 2 diabetes directly and also indirectly by increasing hepatic glucose output. Dotted arrows represent previous genetic associations. Solid arrows show observations reported by Lyssenko and colleagues in the current issue of the JCI (1).

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts