Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hepcidin regulation: ironing out the details
Ivana De Domenico, … , Diane M. Ward, Jerry Kaplan
Ivana De Domenico, … , Diane M. Ward, Jerry Kaplan
Published July 2, 2007
Citation Information: J Clin Invest. 2007;117(7):1755-1758. https://doi.org/10.1172/JCI32701.
View: Text | PDF
Commentary

Hepcidin regulation: ironing out the details

  • Text
  • PDF
Abstract

Hepcidin is a peptide hormone secreted by the liver that plays a central role in the regulation of iron homeostasis. Increased hepcidin levels result in anemia while decreased expression is the causative feature in most primary iron overload diseases. Mutations in hemochromatosis type 2 (HFE2), which encodes the protein hemojuvelin (HJV), result in the absence of hepcidin and an early-onset form of iron overload disease. HJV is a bone morphogenetic protein (BMP) coreceptor and HJV mutants have impaired BMP signaling. In this issue of the JCI, Babitt and colleagues show that BMPs are autocrine hormones that induce hepcidin expression (see the related article beginning on page 1933). Administration of a recombinant, soluble form of HJV decreased hepcidin expression and increased serum iron levels by mobilizing iron from splenic stores. These results demonstrate that recombinant HJV may be a useful therapeutic agent for treatment of the anemia of chronic disease, a disorder resulting from high levels of hepcidin expression.

Authors

Ivana De Domenico, Diane M. Ward, Jerry Kaplan

×

Figure 2

Transcriptional regulation of hepcidin by the BMP/Smad pathway.

Options: View larger image (or click on image) Download as PowerPoint
Transcriptional regulation of hepcidin by the BMP/Smad pathway.
Hepcidin...
Hepcidin transcription depends upon signaling through BMP receptors (BMP-Rs) and downstream Smads. BMPs can act as autocrine or paracrine hormones. Binding of BMP to cell surface HJV positions BMP to activate BMP receptors. Activation of BMP receptors leads to the generation of phosphorylated RSmads, which dimerize with Smad4. The RSmad/Smad4 heterodimer translocates into the nucleus and activates transcription of the HAMP gene, which encodes hepcidin. Soluble HJV binding to BMP prevents the formation of a cell surface BMP-HJV complex and blocks activation of BMP receptors. Inflammatory cytokines such as IL-6 bind to IL-6 receptors (IL-6Rs), activating Stat3, which also binds to the HAMP promoter. Stat3 activation requires the presence of Smad4, as deletion of the Smad4 gene prevents IL-6 induction of hepcidin. Smad4 is downstream of TFR2 and HFE, which suggests that the signal provided by these proteins also activates the HAMP promoter or that these membrane proteins affect BMP receptor signal transmission. In their study in this issue of the JCI, Babitt and colleagues demonstrate in vivo that soluble HJV binds BMPs produced by the liver, leading to alteration in iron homeostasis (3).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts