Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cellular and molecular basis of wound healing in diabetes
Harold Brem, Marjana Tomic-Canic
Harold Brem, Marjana Tomic-Canic
Published May 1, 2007
Citation Information: J Clin Invest. 2007;117(5):1219-1222. https://doi.org/10.1172/JCI32169.
View: Text | PDF
Commentary

Cellular and molecular basis of wound healing in diabetes

  • Text
  • PDF
Abstract

Diabetic foot ulcers (DFUs), a leading cause of amputations, affect 15% of people with diabetes. A series of multiple mechanisms, including decreased cell and growth factor response, lead to diminished peripheral blood flow and decreased local angiogenesis, all of which can contribute to lack of healing in persons with DFUs. In this issue of the JCI, Gallagher and colleagues demonstrate that in diabetic mice, hyperoxia enhances the mobilization of circulating endothelial progenitor cells (EPCs) from the bone marrow to the peripheral circulation (see the related article beginning on page 1249). Local injection of the chemokine stromal cell–derived factor–1α then recruits these EPCs to the cutaneous wound site, resulting in accelerated wound healing. Thus, Gallagher et al. have identified novel potential targets for therapeutic intervention in diabetic wound healing.

Authors

Harold Brem, Marjana Tomic-Canic

×

Figure 2

Molecular basis of debridement.

Options: View larger image (or click on image) Download as PowerPoint
Mechanisms of wound healing in healthy people versus people with diabete...
A typical foot ulcer in a person with diabetes is shown at top. (i) The nonhealing edge (callus) containing ulcerogenic cells with molecular markers indicative of healing impairment. (ii) Phenotypically normal but physiologically impaired cells, which can be stimulated to heal. Despite a wound’s appearance after debridement, it may not be healing and may need to be evaluated for the presence of molecular markers of inhibition and/or hyperkeratotic tissue (e.g., c-myc and β-catenin). We expect more such molecular markers will be identified in the future. Once a wound is debrided, pathology analyses along with immunohistochemistry should determine whether the extent of debridement was sufficient. If the extent of debridement was not sufficient (lower left diagram), cells positive for c-myc (green) and nuclear β-catenin (purple) will be found, indicating the presence of ulcerogenic cells, which will prevent the wound from healing and indicate that additional debridement is necessary. Lack of healing is also demarcated by a thicker epidermis, thicker cornified layer, and presence of nuclei in the cornified layer. If the debridement was successful (lower right lower diagram), no staining for c-myc or β-catenin will be found, indicating an absence of ulcerogenic cells and successful debridement. These markers of inhibition are useful, but the most important goal is actual healing as defined by the appearance of new epithelium, decreased area of the wound, and no drainage. This information should be stored electronically in the Wound Electronic Medical Record (WEMR), which provides an objective analysis coupled with pathology and microbiology reports.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts