Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cellular and molecular basis of wound healing in diabetes
Harold Brem, Marjana Tomic-Canic
Harold Brem, Marjana Tomic-Canic
Published May 1, 2007
Citation Information: J Clin Invest. 2007;117(5):1219-1222. https://doi.org/10.1172/JCI32169.
View: Text | PDF
Commentary

Cellular and molecular basis of wound healing in diabetes

  • Text
  • PDF
Abstract

Diabetic foot ulcers (DFUs), a leading cause of amputations, affect 15% of people with diabetes. A series of multiple mechanisms, including decreased cell and growth factor response, lead to diminished peripheral blood flow and decreased local angiogenesis, all of which can contribute to lack of healing in persons with DFUs. In this issue of the JCI, Gallagher and colleagues demonstrate that in diabetic mice, hyperoxia enhances the mobilization of circulating endothelial progenitor cells (EPCs) from the bone marrow to the peripheral circulation (see the related article beginning on page 1249). Local injection of the chemokine stromal cell–derived factor–1α then recruits these EPCs to the cutaneous wound site, resulting in accelerated wound healing. Thus, Gallagher et al. have identified novel potential targets for therapeutic intervention in diabetic wound healing.

Authors

Harold Brem, Marjana Tomic-Canic

×

Figure 1

Mechanisms of wound healing in healthy people versus people with diabetes.

Options: View larger image (or click on image) Download as PowerPoint
Molecular basis of debridement.
A typical foot ulcer in a person with di...
In healthy individuals (left), the acute wound healing process is guided and maintained through integration of multiple signals (in the form of cytokines and chemokines) released by keratinocytes, fibroblasts, endothelial cells, macrophages, and platelets. During wound-induced hypoxia, VEGF released by macrophages, fibroblasts, and epithelial cells induces the phosphorylation and activation of eNOS in the bone marrow, resulting in an increase in NO levels, which triggers the mobilization of bone marrow EPCs to the circulation. The chemokine SDF-1α promotes the homing of these EPCs to the site of injury, where they participate in neovasculogenesis. In this issue of the JCI, Gallagher et al. (18) show that, in a murine model of diabetes (right), eNOS phosphorylation in the bone marrow is impaired, which directly limits EPC mobilization from the bone marrow into the circulation. They also show that SDF-1α expression is decreased in epithelial cells and myofibroblasts in the diabetic wound, which prevents EPC homing to wounds and therefore limits wound healing. The authors further show that establishing hyperoxia in wound tissue (via HBO therapy) activated many NOS isoforms, increased NO levels, and enhanced EPC mobilization to the circulation. However, local administration of SDF-1α was required to trigger homing of these cells to the wound site. These results suggest that HBO therapy combined with SDF-1α administration may be a potential therapeutic option to accelerate diabetic wound healing alone or in combination with existing clinical protocols.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts