T cell–mediated autoimmune diseases such as multiple sclerosis and rheumatoid arthritis are driven by autoaggressive Th cells. The pathogenicity of such Th cells has, in the past, been considered to be dictated by their cytokine polarization profile. The polarization of such effector T cells relies critically upon the actions of cytokines secreted by APCs. While Th1 polarization has long been associated with the pathogenesis of autoimmune diseases, recent data obtained in gene-targeted mice and the discovery of Th17 cell involvement in autoimmunity conflict with this hypothesis. In light of these recent developments, we discuss in this review the actions of APC-derived cytokines and their emerging roles in T cell polarization in the context of autoimmune inflammatory responses.
Ilona Gutcher, Burkhard Becher
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 6,986 | 412 |
192 | 46 | |
Figure | 1,356 | 2 |
Supplemental data | 0 | 3 |
Citation downloads | 114 | 0 |
Totals | 8,648 | 463 |
Total Views | 9,111 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.