Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

A dominant role for glucose in β cell compensation of insulin resistance
Gordon C. Weir, Susan Bonner-Weir
Gordon C. Weir, Susan Bonner-Weir
Published January 2, 2007
Citation Information: J Clin Invest. 2007;117(1):81-83. https://doi.org/10.1172/JCI30862.
View: Text | PDF
Commentary

A dominant role for glucose in β cell compensation of insulin resistance

  • Text
  • PDF
Abstract

Increased insulin secretion and expansion of pancreatic β cell mass work together to maintain normal glucose levels when insulin resistance develops. Changes in glucose concentration have long been known to have profound effects upon the rates of insulin secretion and β cell mass, but various other agents can also cause changes, raising questions about which mechanisms are dominant. Evidence favoring a dominant role for glucose is provided by Terauchi et al. in this issue of the JCI (see the related article beginning on page 246). Mice haploinsufficient for β cell glucokinase (Gck) were unable to increase their β cell mass in response to insulin resistance produced by high-fat feeding. Gck is known to be the glucose sensor for glucose metabolism in β cells. The study also provides strong evidence that insulin receptor substrate 2 (Irs2), which is known to have major effects on β cell growth and survival, is a key downstream mediator of the effects of glucose found in this study.

Authors

Gordon C. Weir, Susan Bonner-Weir

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 261 56
PDF 49 17
Figure 46 1
Citation downloads 50 0
Totals 406 74
Total Views 480
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts