Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Citations to this article

Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities
Tilo Grosser, … , Susanne Fries, Garret A. FitzGerald
Tilo Grosser, … , Susanne Fries, Garret A. FitzGerald
Published January 4, 2006
Citation Information: J Clin Invest. 2006;116(1):4-15. https://doi.org/10.1172/JCI27291.
View: Text | PDF
Science in Medicine

Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities

  • Text
  • PDF
Abstract

Inhibitors selective for prostaglandin G/H synthase-2 (PGHS-2) (known colloquially as COX-2) were designed to minimize gastrointestinal complications of traditional NSAIDs — adverse effects attributed to suppression of COX-1–derived PGE2 and prostacyclin (PGI2). Evidence from 2 randomized controlled-outcome trials (RCTs) of 2 structurally distinct selective inhibitors of COX-2 supports this hypothesis. However, 5 RCTs of 3 structurally distinct inhibitors also indicate that such compounds elevate the risk of myocardial infarction and stroke. The clinical information is biologically plausible, as it is compatible with evidence that inhibition of COX-2–derived PGI2 removes a protective constraint on thrombogenesis, hypertension, and atherogenesis in vivo. However, the concept of simply tipping a “balance” between COX-2–derived PGI2 and COX-1–derived platelet thromboxane is misplaced. Among the questions that remain to be addressed are the following: (a) whether this hazard extends to all or some of the traditional NSAIDs; (b) whether adjuvant therapies, such as low-dose aspirin, will mitigate the hazard and if so, at what cost; (c) whether COX-2 inhibitors result in cardiovascular risk transformation during chronic dosing; and (d) how we might identify individuals most likely to benefit or suffer from such drugs in the future.

Authors

Tilo Grosser, Susanne Fries, Garret A. FitzGerald

×

Loading citation information...
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts