Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Caffey disease: an unlikely collagenopathy
Francis H. Glorieux
Francis H. Glorieux
Published May 2, 2005
Citation Information: J Clin Invest. 2005;115(5):1142-1144. https://doi.org/10.1172/JCI25148.
View: Text | PDF
Commentary

Caffey disease: an unlikely collagenopathy

  • Text
  • PDF
Abstract

Infantile cortical hyperostosis (also known as Caffey disease) is characterized by hyperirritability, acute inflammation of soft tissues, and profound alterations of the shape and structure of the underlying bones, particularly the long bones, mandible, clavicles, or ribs. In this issue of the JCI, Gensure et al. undertook fine mapping of the genetic locus for this disease in a large kindred of individuals with the autosomal dominant form of the condition. The authors found a novel missense mutation in COL1A1, the gene encoding the α1 chain of type I collagen, in all affected individuals in 3 discrete pedigrees. This is a surprising finding, as all other reported mutations affecting the synthesis of type I collagen lead to conditions such as osteogenesis imperfecta and Ehlers-Danlos syndrome, in which quantitative or qualitative defects in type I collagen synthesis give rise to bone fragility and/or connective tissue hyperextensibility. The deleterious effect of the mutation on collagen fibril morphology is demonstrated; however, the precise functional link between the reported missense mutation and the localized inflammation and hyperostosis seen in Caffey disease awaits future studies.

Authors

Francis H. Glorieux

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
Schematic illustrating normal and exuberant bone formation. (A) Represen...
Schematic illustrating normal and exuberant bone formation. (A) Representation of a growing bone. Growth in length is achieved by endochondral bone formation adding cancellous bone in the metaphyseal area. Gain in diameter comes from subperiosteal new bone apposition by intramembranous bone formation. The periosteum is an envelope of fibrous connective tissue that is wrapped around diaphyses. The size of the marrow cavity is controlled by a combination of bone apposition and resorption at the endocortical surface. (B and C) In ICH/Caffey disease, hyperostosis develops by exacerbated subperiosteal intramembranous bone formation triggered by local inflammation (left side of B and C). In the remodeling phase, the excess of bone tissue is resorbed either at the endocortical surface, leading to an expansion of the marrow cavity and a more persistent deformity (right side of B), or at the exocortical surface, with no effect on the size of the marrow cavity (right side of C).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts