Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Host-based antipoxvirus therapeutic strategies: turning the tables
Anthony S. Fauci, Mark D. Challberg
Anthony S. Fauci, Mark D. Challberg
Published February 1, 2005
Citation Information: J Clin Invest. 2005;115(2):231-233. https://doi.org/10.1172/JCI24270.
View: Text | PDF
Commentary

Host-based antipoxvirus therapeutic strategies: turning the tables

  • Text
  • PDF
Abstract

The potential threat of the smallpox virus as a bioterror weapon has long been recognized, and the need for developing suitable countermeasures has become especially acute following the events of September 2001. Traditional antiviral agents interfere with viral proteins or functions. In a new study, Yang et al. focus instead on host cellular pathways used by the virus. A drug that interferes with the cellular ErbB-1 signal transduction pathway, activated by smallpox growth factor, sheds new light on how the virus replicates in the cell. Drugs that target the ErbB-signaling pathways represent a promising new class of antiviral agents.

Authors

Anthony S. Fauci, Mark D. Challberg

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Possible mechanism for SPGF-dependent pathogenesis of variola virus and ...
Possible mechanism for SPGF-dependent pathogenesis of variola virus and the inhibitory effect of CI-1033. SPGF binds to the ErbB-1 receptor, inducing dimerization and activation. Active phosphorylation of relevant receptors, through unknown mechanisms, may render the cell permissive for viral replication. Phosphorylated ErbB-1 can also activate c-Src kinase as well as the actin polymerization complex, which regulates the formation of actin tails within the cytoplasm. c-Src in turn activates the viral A36 protein, an event required for activation of the actin polymerization complex. Viral replication yields IMVs, which are released from the host cell through cell death and lysis. Alternatively, IMV particles are transported via microtubules and wrapped with additional membrane and protein components to form intracellular-enveloped virus (IEV) particles. IEVs are transported to the cell membrane where they fuse with the plasma membrane to become cellular-enveloped virus (CEV) particles and activate the actin polymerization complex. Some CEVs are released from the cell as EEV particles, which rapidly disseminate the infection. CI-1033 can block the phosphorylation of ErbB-1 and subsequent c-Src activation as well as activation of the actin polymerization complex, which as Yang et al. (8) speculate, may play a role in viral extrusion. CI-1033 may also interfere with events that render cells permissive for viral replication. Figure adapted with permission from Science (15) and Virus Research (13).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts