Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A1 antagonism in asthma: better than coffee?
Stephen L. Tilley, Richard C. Boucher
Stephen L. Tilley, Richard C. Boucher
Published January 3, 2005
Citation Information: J Clin Invest. 2005;115(1):13-16. https://doi.org/10.1172/JCI24009.
View: Text | PDF
Commentary

A1 antagonism in asthma: better than coffee?

  • Text
  • PDF
Abstract

Adenosine is a ubiquitous biological mediator with the capacity to produce both pro- and anti-inflammatory effects in tissues. Proinflammatory and bronchoconstrictive actions of adenosine in the asthmatic lung are well recognized, with the latter being mediated, in part, through A1 receptor activation on airway smooth muscle. In this issue of the JCI, Sun et al. report findings in adenosine deaminase–deficient mice that suggest the occurrence of anti-inflammatory actions of adenosine in the lung, mediated through A1 adenosine receptors on macrophages. Here we discuss the history of the study of adenosine receptor ligands for asthma and how enhanced understanding of adenosine receptor biology may aid in the rational exploitation of these receptors as therapeutic targets.

Authors

Stephen L. Tilley, Richard C. Boucher

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
Model of receptors and cell types mediating the pro- and anti-inflammato...
Model of receptors and cell types mediating the pro- and anti-inflammatory effects of adenosine in the lung. Proinflammatory pathways are depicted in red while anti-inflammatory pathways are depicted in blue. A3 receptor activation has been implicated in a number of proinflammatory events including mast cell–dependent increases in vasopermeability, adenosine-induced mast cell degranulation, enhancement of antigen-induced mast cell degranulation, mucus metaplasia and secretion, and recruitment of eosinophils and neutrophils to the airway. It remains unclear whether this chemotactic effect of adenosine on granulocytes is due to direct activation of A3 receptors on these leukocytes or indirect activation through A3-induced mediator release by other cell types, such as mast cells. A2B receptors have also been implicated in mediating mast cell activation by adenosine. IL-13 and adenosine have been shown to stimulate one another in an amplification pathway that may contribute to the proinflammatory capacity of each mediator. Macrophages play an important anti-inflammatory role in asthma, and adenosine sends anti-inflammatory signals to macrophages through A1 and A3 receptors. These effects may occur through both the enhanced release of anti-inflammatory mediators, such as IL-10 and PGE2, and the inhibition of release of proinflammatory mediators, including TNF-α and MMPs. Adenosine elicits bronchoconstriction in the asthmatic airway both directly from the activation of A1 receptors on airway smooth muscle and indirectly by bronchoconstrictive substances released by mast cells. A2A receptors are believed to send anti-inflammatory signals to all cell types on which they are expressed. Events depicted in the interstitium may also occur in the airway lumen.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts