Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Regeneration of the pancreatic β cell
Massimo Trucco
Massimo Trucco
Published January 3, 2005
Citation Information: J Clin Invest. 2005;115(1):5-12. https://doi.org/10.1172/JCI23935.
View: Text | PDF
Review

Regeneration of the pancreatic β cell

  • Text
  • PDF
Abstract

Type 1 diabetes is the result of an autoimmune attack against the insulin-producing β cells of the endocrine pancreas. Current treatment for patients with type 1 diabetes typically involves a rigorous and invasive regimen of testing blood glucose levels many times a day along with subcutaneous injections of recombinant DNA–derived insulin. Islet transplantation, even with its substantially improved outcome in recent years, is still not indicated for pediatric patients. However, in light of the fact that some regenerative capabilities of the endocrine pancreas have been documented and recent research has shown that human ES cell lines can be derived in vitro, this review discusses whether it is practical or even possible to combine these lines of research to more effectively treat young diabetic patients.

Authors

Massimo Trucco

×

Figure 5

Options: View larger image (or click on image) Download as PowerPoint
Radiographic evaluation at 4 and 12 weeks after surgery. The critical-si...
Radiographic evaluation at 4 and 12 weeks after surgery. The critical-sized (i.e., non–spontaneously reparable) defect in the femora treated with bone marrow–derived stromal cells transfected with retro-BMP4 exhibited a notable bridging callus (i.e., the white mass between the 2 extremes of the fracture interval) at both 4 (A) and 12 (B) weeks after surgery. The defect in the femora treated with MDCs transfected with BMP4 had also developed a bridging callus at 4 (C) and 12 (D) weeks. No bone formation was radiographically evident in the control – i.e., femora treated with MDCs transfected with the LacZ gene – at both 4 (E) and 12 (F) weeks after surgery. Figure reproduced with permission from Langenbecks Archives of Surgery (55).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts