Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
The Staphylococcus aureus “superbug”
Timothy J. Foster
Timothy J. Foster
Published December 15, 2004
Citation Information: J Clin Invest. 2004;114(12):1693-1696. https://doi.org/10.1172/JCI23825.
View: Text | PDF
Commentary

The Staphylococcus aureus “superbug”

  • Text
  • PDF
Abstract

There has been some debate about the disease-invoking potential of Staphylococcus aureus strains and whether invasive disease is associated with particularly virulent genotypes, or “superbugs.” A study in this issue of the JCI describes the genotyping of a large collection of nonclinical, commensal S. aureus strains from healthy individuals in a Dutch population. Extensive study of their genetic relatedness by amplified restriction fragment typing and comparison with strains that are associated with different types of infections revealed that the S. aureus population is clonal and that some strains have enhanced virulence. This is discussed in the context of growing interest in the mechanisms of bacterial colonization, antibiotic resistance, and novel vaccines.

Authors

Timothy J. Foster

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Schematic diagram illustrating how S. aureus acquires resistance to meth...
Schematic diagram illustrating how S. aureus acquires resistance to methicillin and its ability to express different virulence factors. The bacterium expresses surface protein adhesins and WTA and also secretes many toxins and enzymes by activation of chromosomal genes. Adhesins and WTA have been implicated in nasal and skin colonization. Resistance to methicillin is acquired by insertion of a horizontally transferred DNA element called SCCmec. Five different SCCmec elements can integrate at the same site in the chromosome by a Campbell-type mechanism involving site-specific recombination. The mecA gene encodes a novel β-lactam–insensitive penicillin binding protein, PBP2a, which continues to synthesize new cell wall peptidoglycan even when the normal penicillin binding proteins are inhibited. Some virulence factors such as PVL and the chemotaxis inhibitory protein, CHIP, are encoded by genes located on lysogenic bacteriophages.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts