Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cleft palate: players, pathways, and pursuits
Jeffrey C. Murray, Brian C. Schutte
Jeffrey C. Murray, Brian C. Schutte
Published June 15, 2004
Citation Information: J Clin Invest. 2004;113(12):1676-1678. https://doi.org/10.1172/JCI22154.
View: Text | PDF
Commentary

Cleft palate: players, pathways, and pursuits

  • Text
  • PDF
Abstract

Cleft lip and palate is a common human birth defect, and its causes are being dissected through studies of human populations and through the use of animal models. Mouse models in particular have made a substantial contribution to our understanding of the gene pathways involved in palate development and the nature of signaling molecules that act in a tissue-specific manner at critical stages of embryogenesis. Related work has provided further support for investigating the role of common environmental triggers as causal covariates.

Authors

Jeffrey C. Murray, Brian C. Schutte

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Signaling molecules essential for palate development. (A) Transverse sec...
Signaling molecules essential for palate development. (A) Transverse section of embryonic palate. (B) Schematic of sections of normal palate shelf (ps; blue) development at the indicated days after conception. Palate shelves emanate from maxillary prominences (E11.5), grow, and extend vertically past the tongue (E12.5). The tongue (T; pink) drops, allowing the palate shelves to elevate (E13.5), appose (E14.5), and fuse (E15.5). (C and D) Cell-specific expression of signaling molecules during palate growth (C) and fusion (D). Genes involved in palate growth may also be involved in fusion. The γ-aminobutyric acid receptor subunit β3 (Gabrb3) is also involved in palate elevation (not shown). Molecules are expressed in the epithelium (yellow) or mesenchyme (blue). Molecules shown to be essential for palate development are indicated for mouse (oval), human (underlined), and both mouse and human (rectangle). Arrows indicate known (black) or predicted (gray) gene-gene (straight) and gene-environment (wavy) interactions. Ahr, aryl-hydrocarbon receptor; Alk5, activin receptor_like kinase 5; Bmp4, bone morphogenic protein 4; Bzd’s, benzodiazepines; Msx1, msh-like 1 homeo box; Ptc, patched homolog 1; Pvrl1, poliovirus receptor_related 1; SATB2, SATB family member 2; TBX22, T-box 22; Tgfb3, transforming growth factor β3.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts