Conserved pairs of CBS sequence motifs (named after cystathionine β-synthase) found in a wide variety of proteins associate to form Bateman domains. A new study establishes that Bateman domains bind adenosyl compounds and regulate IMP dehydrogenase, CBS, chloride channels, and AMP-activated protein kinase. This discovery reveals how mutations in CBS sequences in these proteins cause hereditary diseases and provides a rich vista of conceptual opportunities for therapies in energy metabolism, obesity, diabetes, cancer, antivirals, and immunosuppression.
Bruce E. Kemp
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 689 | 61 |
49 | 26 | |
Figure | 47 | 1 |
Citation downloads | 62 | 0 |
Totals | 847 | 88 |
Total Views | 935 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.