Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Telomeres, stem cells, senescence, and cancer
Norman E. Sharpless, Ronald A. DePinho
Norman E. Sharpless, Ronald A. DePinho
Published January 15, 2004
Citation Information: J Clin Invest. 2004;113(2):160-168. https://doi.org/10.1172/JCI20761.
View: Text | PDF
Perspective Series

Telomeres, stem cells, senescence, and cancer

  • Text
  • PDF
Abstract

Mammalian aging occurs in part because of a decline in the restorative capacity of tissue stem cells. These self-renewing cells are rendered malignant by a small number of oncogenic mutations, and overlapping tumor suppressor mechanisms (e.g., p16INK4a-Rb, ARF-p53, and the telomere) have evolved to ward against this possibility. These beneficial antitumor pathways, however, appear also to limit the stem cell life span, thereby contributing to aging.

Authors

Norman E. Sharpless, Ronald A. DePinho

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
The p53 and Rb pathways. p53 activity is predominantly regulated at the ...
The p53 and Rb pathways. p53 activity is predominantly regulated at the protein level. In the unstressed state, p53 is rapidly degraded by MDM2; a process which is inhibited by ARF. Also, p53 can be stabilized by N-terminal serine phosphorylation in response to genotoxic stresses, and this phosphorylation inhibits its interaction with MDM2. p53 activation potently induces either growth arrest or apoptosis depending on cellular context. The antiproliferative activity of p53 in part results from p21 expression, which is a p53 transcriptional target. Rb is inactivated by phosphorylation as a result of the cyclin-dependent kinases CDK4 and CDK6. Hypophosphorylated Rb binds E2F and represses proliferation. CDK activity is inhibited by both p16INK4a and p21.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts