Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Tales from the crypt
Eric A. Schon
Eric A. Schon
View: Text | PDF
Commentary

Tales from the crypt

  • Text
  • PDF
Abstract

Intestinal colonic crypts are derived from a stem cell population located at the base of each crypt. A new analysis of mitochondrial function and of the rates of mitochondrial DNA (mtDNA) mutation in individual crypts shows that mtDNA mutations arise in stem cells — and at a surprisingly high frequency. Because crypts turn over extremely rapidly (about once per week), somatic mtDNA mutations can “take over the system” and even become homoplasmic, in a manner similar to what has been shown to occur in tumors.

Authors

Eric A. Schon

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
Two-color histochemistry for SDH and COX reveals three types of crypts, ...
Two-color histochemistry for SDH and COX reveals three types of crypts, with normal (a), deficient (b), and “mosaic” (c) patterns of mitochondrial function, reflecting the phenotype in the stem cells that gave rise to each type of crypt.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts