Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Tales from the crypt
Eric A. Schon
Eric A. Schon
Published November 1, 2003
Citation Information: J Clin Invest. 2003;112(9):1312-1315. https://doi.org/10.1172/JCI20249.
View: Text | PDF
Category: Commentary

Tales from the crypt

  • Text
  • PDF
Abstract

Intestinal colonic crypts are derived from a stem cell population located at the base of each crypt. A new analysis of mitochondrial function and of the rates of mitochondrial DNA (mtDNA) mutation in individual crypts shows that mtDNA mutations arise in stem cells — and at a surprisingly high frequency. Because crypts turn over extremely rapidly (about once per week), somatic mtDNA mutations can “take over the system” and even become homoplasmic, in a manner similar to what has been shown to occur in tumors.

Authors

Eric A. Schon

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
(a) The respiratory chain. Nuclear DNA-encoded subunits are light gray; ...
(a) The respiratory chain. Nuclear DNA-encoded subunits are light gray; mtDNA-encoded subunits (see panel b) are dark gray. (b) Map of the human mitochondrial genome. Polypeptide-coding gene products (outside the circle) specify 7 subunits of NADH dehydrogenase-CoQ oxidoreductase (ND), 1 subunit of CoQ-cytochrome b oxidoreducase (Cyt b), 3 subunits of COX, and 2 subunits of ATP synthase (A). Protein synthesis gene products (inside the circle) specify 12S and 16S rRNAs, and 22 tRNAs (one-letter code). Figure modified from Schon and Manfredi (10).
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts