Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Decreased elastin in vessel walls puts the pressure on
Jeanine D’Armiento
Jeanine D’Armiento
Published November 1, 2003
Citation Information: J Clin Invest. 2003;112(9):1308-1310. https://doi.org/10.1172/JCI20226.
View: Text | PDF
Commentary

Decreased elastin in vessel walls puts the pressure on

  • Text
  • PDF
Abstract

Mice haploinsufficient for elastin develop structural changes in vessel walls similar to those seen in patients with mutations in the elastin gene. A new study demonstrates that due to mechanical changes in the vessel wall, these animals exhibit increased mean arterial pressures. The results evoke the possibility that alterations in elastin may contribute to the development of essential hypertension in patients.

Authors

Jeanine D’Armiento

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Haploinsufficiency of elastin in mice leads to developmental changes in ...
Haploinsufficiency of elastin in mice leads to developmental changes in the vessel wall, resulting in an increase in lamellar units. During the adult life of the animal, these structural changes translate into altered vessel compliance and a significant increase in the mean arterial pressure. These changes are similar to what is observed in two diseases identified as having mutations in the elastin gene; however, the incidence of hypertension (HTN) is lower in the human diseases. These intriguing findings raise the possibility that patients with essential hypertension, who exhibit decreased compliance of their arterial vessels, may have mutations in their elastin gene. Such mutations would lead to structural changes in the vessel during development that predisposes the patients to the development of hypertension later in life.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts