Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Interspecies communication in bacteria
Michael J. Federle, Bonnie L. Bassler
Michael J. Federle, Bonnie L. Bassler
Published November 1, 2003
Citation Information: J Clin Invest. 2003;112(9):1291-1299. https://doi.org/10.1172/JCI20195.
View: Text | PDF
Perspective Series

Interspecies communication in bacteria

  • Text
  • PDF
Abstract

Until recently, bacteria were considered to live rather asocial, reclusive lives. New research shows that, in fact, bacteria have elaborate chemical signaling systems that enable them to communicate within and between species. One signal, termed AI-2, appears to be universal and facilitates interspecies communication. Many processes, including virulence factor production, biofilm formation, and motility, are controlled by AI-2. Strategies that interfere with communication in bacteria are being explored in the biotechnology industry with the aim of developing novel antimicrobials. AI-2 is a particularly attractive candidate for such studies because of its widespread use in the microbial kingdom.

Authors

Michael J. Federle, Bonnie L. Bassler

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Modular organization of two-component signal transduction cascades in ba...
Modular organization of two-component signal transduction cascades in bacteria. Bacteria typically detect changes in their environment using two-component phosphorelay systems. Information is detected by the first protein component, which is usually a membrane-spanning sensor-histidine kinase (green). Phosphate is transferred to the response regulator protein that is responsible for controlling the output (red). The sensor protein is autophosphorylated on a conserved histidine residue (H1). Phosphate is transferred to a conserved aspartate residue (D1) on the response regulator. Two-component systems often include additional response regulator and phosphotransferase proteins (blue and yellow domains, respectively) that contain conserved aspartate and histidine residues. The modular domain organization of the two-component circuits can vary, as these circuits can be composed of two, three, or four protein partners.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts