Lipids, which constitute half of the brain’s solid matter, are essential for forming specialized membranes of neural cells, providing energy sources, and facilitating cell-to-cell communication. Although the blood-brain barrier restricts lipid movement between peripheral circulation and the brain, multiple mechanisms supply the building blocks necessary to synthesize the diverse lipid species present in the central nervous system (CNS). In this issue of the JCI, Song et al. characterize specialized microvascular niches that metabolize circulating triglyceride-rich lipoproteins (TRLs) to deliver fatty acids into the brain. They located GPIHBP1, an essential chaperone for lipoprotein lipase (LPL) in the fenestrated endothelial cells of the choroid plexus (ChP) and circumventricular organs (CVOs), demonstrating lipolytic processing of peripheral TRLs and brain uptake of fatty acids. This advance implicates the GPIHBP1/LPL lipid metabolic hub in supporting the roles of the ChP and CVO in cerebrospinal fluid composition, immunity, satiety, thirst, and metabolic homeostasis.
A. Dushani Ranasinghe, Timothy Hla
Usage data is cumulative from October 2025 through November 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 1,417 | 70 |
| 335 | 30 | |
| Figure | 189 | 0 |
| Citation downloads | 20 | 0 |
| Totals | 1,961 | 100 |
| Total Views | 2,061 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.