Endothelial dysfunction remains a cornerstone of diabetic vascular complications. RBCs emerge as pivotal players in endothelial dysfunction, yet the underlying mechanisms remain elusive. In this issue of the JCI, Collado et al. show that the detrimental action of RBCs on the endothelium is mediated by extracellular vesicles (EVs). EVs derived from RBCs (RBC-EVs) of patients with diabetes were taken up by the endothelium and were able to impair endothelium-dependent relaxation via an EV-mediated transfer of the prooxidant enzyme arginase-1 (Arg1) from RBCs to endothelial cells. These findings reveal events implicated in vascular oxidative stress and set the stage for personalized approaches preventing RBC-EVs’ uptake by the endothelium.
Sarah Costantino, Shafeeq A. Mohammed, Francesco Paneni
Usage data is cumulative from May 2025 through December 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 2,682 | 229 |
| 570 | 80 | |
| Figure | 254 | 0 |
| Citation downloads | 143 | 0 |
| Totals | 3,649 | 309 |
| Total Views | 3,958 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.