Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

SLC44A2-mediated phenotypic switch of vascular smooth muscle cells contributes to aortic aneurysm
Mengen Xing, … , Yachen Ji, Weihong Song
Mengen Xing, … , Yachen Ji, Weihong Song
Published August 15, 2024
Citation Information: J Clin Invest. 2024;134(16):e183527. https://doi.org/10.1172/JCI183527.
View: Text | PDF
Commentary Vascular biology

SLC44A2-mediated phenotypic switch of vascular smooth muscle cells contributes to aortic aneurysm

  • Text
  • PDF
Abstract

The phenotypic switch of vascular smooth cells (VSMCs) from a contractile to a synthetic state is associated with the development and progression of aortic aneurysm (AA). However, the mechanism underlying this process remains unclear. In this issue of the JCI, Song et al. identified SLC44A2 as a regulator of the phenotypic switch in VSMCs. Inhibition of SLC44A2 facilitated the switch to the synthetic state, contributing to the development of AA. Mechanistically, SLC44A2 interacted with NRP1 and ITGB3 to activate the TGF-β/SMAD signaling pathway, resulting in VSMCs with a contractile phenotype. Furthermore, VSMC-specific SLC44A2 overexpression by genetic or pharmacological manipulation reduced AA in mouse models. These findings suggest the potential of targeting the SLC44A2 signaling pathway for AA prevention and treatment.

Authors

Mengen Xing, Wanqi Chen, Yachen Ji, Weihong Song

×

Usage data is cumulative from August 2024 through May 2025.

Usage JCI PMC
Text version 2,762 584
PDF 632 115
Figure 336 1
Citation downloads 108 0
Totals 3,838 700
Total Views 4,538

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts