Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Oxidative stress and diabetic neuropathy: a new understanding of an old problem
Eva L. Feldman
Eva L. Feldman
Published February 15, 2003
Citation Information: J Clin Invest. 2003;111(4):431-433. https://doi.org/10.1172/JCI17862.
View: Text | PDF
Commentary

Oxidative stress and diabetic neuropathy: a new understanding of an old problem

  • Text
  • PDF
Abstract

Authors

Eva L. Feldman

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Mechanisms leading to neuronal degeneration in hyperglycemia involve rea...
Mechanisms leading to neuronal degeneration in hyperglycemia involve reactive oxygen species (ROS) formation. The diabetic state produces impaired neurotropism, axonal transport and gene expression through at least four major pathways. 1) Excess glucose is diverted away from glycolysis by the polyol pathway that depletes NADPH and cellular antioxidant capacity. 2) Glucose also may become oxidized and form AGEs that alter extracellular matrix, activate receptors that produce ROS intermediates, and alter intracellular protein function. 3) PKC becomes activated either directly by glycolytic intermediates or indirectly as shown as a second messenger for stress hormones, leading to increased vascular disease, inflammation, and oxidative stress. 4) Partial glycolysis causes accumulation of glycolytic intermediates and leads to escape of fructose-6-phosphate along the hexosamine pathway that increases vascular disease and further ROS generation. These mechanisms are ultimately linked to superoxide production through increased glucose respiration that produces superoxide in the mitochondria and also activates the superoxide-producing NADH oxidase. GSSG, glutathione disulfide; TCA, tricarboxylic acid cycle.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts