Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
New insights into the pathogenesis of asthma
Jack A. Elias, … , Robert J. Homer, Zhou Zhu
Jack A. Elias, … , Robert J. Homer, Zhou Zhu
Published February 1, 2003
Citation Information: J Clin Invest. 2003;111(3):291-297. https://doi.org/10.1172/JCI17748.
View: Text | PDF
Science in Medicine

New insights into the pathogenesis of asthma

  • Text
  • PDF
Abstract

Authors

Jack A. Elias, Chun Geun Lee, Tao Zheng, Bing Ma, Robert J. Homer, Zhou Zhu

×

Figure 5

Options: View larger image (or click on image) Download as PowerPoint
Use of null mutant (knockout) mice to define the pathways that transgene...
Use of null mutant (knockout) mice to define the pathways that transgenes use to generate disease-relevant phenotypes. In these experiments, transgenic mice with a disease-relevant phenotype (for example, fibrosis or inflammation) are mated with mice that have a null mutation of a downstream gene that is believed to play an important role in the generation of this phenotype. Transgene-positive (TG[+]) and transgene-negative (TG[–]) mice are generated that have normal downstream genes (+/+), are heterozygote knockout at the downstream gene in question (+/–), or are null-mutant for the downstream gene in question (–/–). The presence and intensity of the phenotypes of these mice are then compared. These comparisons allow an investigator to define the role(s) that this downstream gene plays in the generation of the pathologic response.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts