Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Neuronal degeneration and mitochondrial dysfunction
Eric A. Schon, Giovanni Manfredi
Eric A. Schon, Giovanni Manfredi
Published February 1, 2003
Citation Information: J Clin Invest. 2003;111(3):303-312. https://doi.org/10.1172/JCI17741.
View: Text | PDF
Perspective

Neuronal degeneration and mitochondrial dysfunction

  • Text
  • PDF
Abstract

Authors

Eric A. Schon, Giovanni Manfredi

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Map of the human mitochondrial genome (1). Polypeptide-coding genes (bol...
Map of the human mitochondrial genome (1). Polypeptide-coding genes (boldface) are outside the circle and specify seven subunits of NADH dehydrogenase–coenzyme Q oxidoreductase (ND), one subunit of coenzyme Q–cytochrome c oxidoreductase (Cyt b), three subunits of cytochrome c oxidase (CCO), and two subunits of ATP synthase (A) (see also Figure 2). Protein synthesis genes (12S and 16S rRNAs, and 22 tRNAs [one-letter code]) are inside the circle. Mutations in mtDNA associated with MELAS and MERRF, and mutations with features of neurodegenerative disorders, such as ataxia, chorea, dystonia, motor neuron disease (MND), and parkinsonism, are boxed. A complete list of pathogenic mtDNA mutations may be found in ref. 64.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts