Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Age-dependent impact of the major common genetic risk factor for COVID-19 on severity and mortality
Tomoko Nakanishi, … , J. Brent Richards, Andrea Ganna
Tomoko Nakanishi, … , J. Brent Richards, Andrea Ganna
Published October 1, 2021
Citation Information: J Clin Invest. 2021;131(23):e152386. https://doi.org/10.1172/JCI152386.
View: Text | PDF
Clinical Research and Public Health Genetics

Age-dependent impact of the major common genetic risk factor for COVID-19 on severity and mortality

  • Text
  • PDF
Abstract

Background There is considerable variability in COVID-19 outcomes among younger adults, and some of this variation may be due to genetic predisposition.Methods We combined individual level data from 13,888 COVID-19 patients (n = 7185 hospitalized) from 17 cohorts in 9 countries to assess the association of the major common COVID-19 genetic risk factor (chromosome 3 locus tagged by rs10490770) with mortality, COVID-19-related complications, and laboratory values. We next performed metaanalyses using FinnGen and the Columbia University COVID-19 Biobank.Results We found that rs10490770 risk allele carriers experienced an increased risk of all-cause mortality (HR, 1.4; 95% CI, 1.2–1.7). Risk allele carriers had increased odds of several COVID-19 complications: severe respiratory failure (OR, 2.1; 95% CI, 1.6–2.6), venous thromboembolism (OR, 1.7; 95% CI, 1.2–2.4), and hepatic injury (OR, 1.5; 95% CI, 1.2–2.0). Risk allele carriers age 60 years and younger had higher odds of death or severe respiratory failure (OR, 2.7; 95% CI, 1.8–3.9) compared with those of more than 60 years (OR, 1.5; 95% CI, 1.2–1.8; interaction, P = 0.038). Among individuals 60 years and younger who died or experienced severe respiratory failure, 32.3% were risk-variant carriers compared with 13.9% of those not experiencing these outcomes. This risk variant improved the prediction of death or severe respiratory failure similarly to, or better than, most established clinical risk factors.Conclusions The major common COVID-19 genetic risk factor is associated with increased risks of morbidity and mortality, which are more pronounced among individuals 60 years or younger. The effect was similar in magnitude and more common than most established clinical risk factors, suggesting potential implications for future clinical risk management.

Authors

Tomoko Nakanishi, Sara Pigazzini, Frauke Degenhardt, Mattia Cordioli, Guillaume Butler-Laporte, Douglas Maya-Miles, Luis Bujanda, Youssef Bouysran, Mari E.K. Niemi, Adriana Palom, David Ellinghaus, Atlas Khan, Manuel Martínez-Bueno, Selina Rolker, Sara Amitrano, Luisa Roade Tato, Francesca Fava, FinnGen, The COVID-19 Host Genetics Initiative (HGI), Christoph D. Spinner, Daniele Prati, David Bernardo, Federico Garcia, Gilles Darcis, Israel Fernández-Cadenas, Jan Cato Holter, Jesus M. Banales, Robert Frithiof, Krzysztof Kiryluk, Stefano Duga, Rosanna Asselta, Alexandre C. Pereira, Manuel Romero-Gómez, Beatriz Nafría-Jiménez, Johannes R. Hov, Isabelle Migeotte, Alessandra Renieri, Anna M. Planas, Kerstin U. Ludwig, Maria Buti, Souad Rahmouni, Marta E. Alarcón-Riquelme, Eva C. Schulte, Andre Franke, Tom H. Karlsen, Luca Valenti, Hugo Zeberg, J. Brent Richards, Andrea Ganna

×

Figure 1

Associations with mortality.

Options: View larger image (or click on image) Download as PowerPoint
Associations with mortality.
The results described here were restricted ...
The results described here were restricted to 9699 COVID-19 patients of European ancestry with available follow-up and cause of death information. (A) Survival analysis using Cox’s proportional hazard model. Kaplan-Meier curves stratified by rs10490770 risk allele carrier status. (carriers: n = 1469 vs. noncarriers: n = 8,230). HRs were calculated by adjusting for age, sex, and genetic PCs 1 to 5 as fixed effects and a dummy variable representing the participating studies as random effects. (B) Cumulative incidence curves for COVID-19–related death and COVID-19–unrelated death among the same individuals as described in A.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts