Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Progress in the search for neuronal mechanisms coupling type 2 diabetes to obesity
Michael W. Schwartz
Michael W. Schwartz
Published October 1, 2001
Citation Information: J Clin Invest. 2001;108(7):963-964. https://doi.org/10.1172/JCI14127.
View: Text | PDF
Commentary

Progress in the search for neuronal mechanisms coupling type 2 diabetes to obesity

  • Text
  • PDF
Abstract

Authors

Michael W. Schwartz

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
CNS regulation of glucose metabolism. (a) Neuronal pathways including th...
CNS regulation of glucose metabolism. (a) Neuronal pathways including the melanocortin system potentiate insulin’s ability to inhibit hepatic glucose production and to increase glucose uptake into muscle and fat. Insulin and leptin, which circulate at levels proportionate to body adiposity, activate neuronal glucose-lowering pathways. Since the same neuroendocrine control system is critical for normal energy homeostasis (b), defects in its signaling can induce both insulin resistance and obesity via distinct but complementary mechanisms and thus predispose to type 2 diabetes.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts