Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems
Monty Krieger
Monty Krieger
View: Text | PDF
Perspective

Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems

  • Text
  • PDF
Abstract

Authors

Monty Krieger

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
Role of SR-BI in HDL metabolism in vivo. HDL is thought to extract cellu...
Role of SR-BI in HDL metabolism in vivo. HDL is thought to extract cellular cholesterol from peripheral tissues by a mechanism involving the product of the ABCA1 (Tangier disease) gene. After the plasma HDL-cholesterol (HDL-C) is esterified to cholesteryl ester (CE) by the enzyme lipoprotein lipase (not shown), it can be transported to the liver by either an indirect pathway (transfer to other lipoproteins followed by hepatic receptor-mediated endocytosis, not shown) or a direct pathway via SR-BI and selective cholesterol uptake. The HDL-C in the liver can be secreted into the bile, either as cholesterol or as bile acids. The delivery of cholesterol from peripheral tissues via plasma HDL to the liver for biliary excretion as cholesterol or bile acids is called “reverse cholesterol transport.” SR-BI also can mediate HDL-C uptake by steroidogenic tissues for steroid hormone synthesis or cholesterol storage. Redrawn from refs. 11, 34.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts