Neuromyelitis optica (NMO) is a central nervous system (CNS) inflammatory autoimmune disease caused by antibodies against aquaporin-4 (AQP4) expressed on astrocytes. Binding of AQP4-specific antibodies (NMO-IgG) triggers activation of the complement cascade, which is responsible for astrocyte loss and secondary demyelination. Although the role for the cytolytic complement proteins in astrocyte destruction in NMO is well established, little is known regarding the initial phase of astrocyte injury. In this issue of the JCI, Chen and colleagues evaluated the precytolytic phase when NMO-IgG binds astrocytes in vivo in the absence of exogenous complement. NMO-IgG alone caused astrocyte activation and AQP4 loss. Surprisingly, microglia, CNS-resident innate immune cells that produce endogenous complement, were required for clinical manifestations of disease, a finding that suggests microglia may serve as a therapeutic target in NMO.
Zahra Moinfar, Scott S. Zamvil
Usage data is cumulative from September 2022 through September 2023.
Usage | JCI | PMC |
---|---|---|
Text version | 520 | 157 |
102 | 77 | |
Figure | 87 | 0 |
Citation downloads | 23 | 0 |
Totals | 732 | 234 |
Total Views | 966 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.