Plasmodium vivax bench research greatly lags behind Plasmodium falciparum because of an inability to culture in vitro. A century ago, intentionally inducing a malaria infection was a strategy commonly used to cure late-stage syphilis. These controlled human malaria infections were used with expertise and persisted to the end of World War II. While controlled malaria liver-stage infection has been achieved for both P. vivax and P. falciparum, controlled human transmission to mosquitoes falls short for both species. In this issue of the JCI, Collins et al. present groundbreaking work that establishes a system to transmit P. vivax gametocytes from humans to mosquitoes. The authors injected a unique human isolate of P. vivax that reached high gametocyte density within weeks. This study provides a technical advance that will facilitate the study and eradication of the human parasite P. vivax.
David J. Sullivan, Peter Agre
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 395 | 90 |
92 | 15 | |
Citation downloads | 70 | 0 |
Totals | 557 | 105 |
Total Views | 662 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.