Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Usage Information

At last — linking ORMDL3 polymorphisms, decreased sphingolipid synthesis, and asthma susceptibility
Marsha Wills-Karp
Marsha Wills-Karp
Published January 13, 2020
Citation Information: J Clin Invest. 2020;130(2):604-607. https://doi.org/10.1172/JCI134333.
View: Text | PDF
Commentary

At last — linking ORMDL3 polymorphisms, decreased sphingolipid synthesis, and asthma susceptibility

  • Text
  • PDF
Abstract

Asthma is a common chronic respiratory disease that has a heritable component. Polymorphisms in the endoplasmic reticular protein orosomucoid-like protein 3 (ORMDL3), which regulates sphingolipid homeostasis, have been strongly linked with childhood-onset asthma. Despite extensive investigation, a link between ORMDL3 asthma–risk genotypes and altered sphingolipid synthesis has been lacking. In this issue of the JCI, Ono et al. establish a clear association between nonallergic childhood asthma, lower whole-blood sphingolipids, and asthma-risk 17q21 genotypes. These results demonstrate that genetic variants in ORMDL3 may confer a risk of developing childhood asthma through dysregulation of sphingolipid synthesis. As such, modulation of sphingolipids may represent a promising avenue of therapeutic development for childhood asthma.

Authors

Marsha Wills-Karp

×

Usage data is cumulative from March 2020 through March 2021.

Usage JCI PMC
Text version 881 0
PDF 115 0
Figure 89 0
Citation downloads 7 0
Totals 1,092 0
Total Views 1,092

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts