Although iron deficiency continues to pose a problem for pregnant women and fetal development, an incomplete understanding of placental adaptation to limited iron availability has hindered efforts to identify optimal supplementation strategies. In this issue of the JCI, Sangkhae et al. used mouse models and human placentas to explore maternal, placental, and fetal responses to alterations in iron status during pregnancy. The authors identified molecular mechanisms that limit placental ability to upregulate iron transport in the setting of severe iron deficiency and explored a potential marker of placental maladaptation.
Nermi L. Parrow, Robert E. Fleming
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 493 | 76 |
99 | 15 | |
Table | 48 | 0 |
Citation downloads | 60 | 0 |
Totals | 700 | 91 |
Total Views | 791 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.