Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

The puzzle of lactational bone physiology: osteocytes masquerade as osteoclasts and osteoblasts
Brittany A. Ryan, Christopher S. Kovacs
Brittany A. Ryan, Christopher S. Kovacs
Published June 24, 2019
Citation Information: J Clin Invest. 2019;129(8):3041-3044. https://doi.org/10.1172/JCI130640.
View: Text | PDF
Commentary

The puzzle of lactational bone physiology: osteocytes masquerade as osteoclasts and osteoblasts

  • Text
  • PDF
Abstract

Lactation is a unique period in which the maternal skeleton acts as a storehouse to provide substantial calcium to milk. Women who exclusively breastfeed lose an average of 210 mg of calcium per day, which doubles or triples with twins and triplets. Data from rodent and clinical studies are consistent with skeletal calcium being released to provide much of the calcium needed for milk production. This is programmed to occur independently of dietary calcium intake or intestinal calcium absorption, which remains at the prepregnant rate in breastfeeding women. After weaning, the skeleton is restored to its prior mineralization and strength, but the factors that regulate this remain to be elucidated.

Authors

Brittany A. Ryan, Christopher S. Kovacs

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 418 309
PDF 127 25
Figure 93 2
Citation downloads 80 0
Totals 718 336
Total Views 1,054

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts