Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Functional diversification of IgGs through Fc glycosylation
Taia T. Wang, Jeffrey V. Ravetch
Taia T. Wang, Jeffrey V. Ravetch
Published September 3, 2019
Citation Information: J Clin Invest. 2019;129(9):3492-3498. https://doi.org/10.1172/JCI130029.
View: Text | PDF
Review

Functional diversification of IgGs through Fc glycosylation

  • Text
  • PDF
Abstract

IgG antibodies are secreted from B cells and bind to a variety of pathogens to control infections as well as contribute to inflammatory diseases. Many of the functions of IgGs are mediated through Fcγ receptors (FcγRs), which transduce interactions with immune complexes, leading to a variety of cellular outcomes depending on the FcγRs and cell types engaged. Which FcγRs and cell types will be engaged during an immune response depends on the structure of Fc domains within immune complexes that are formed when IgGs bind to cognate antigen(s). Recent studies have revealed an unexpected degree of structural variability in IgG Fc domains among people, driven primarily by differences in IgG subclasses and N-linked glycosylation of the CH2 domain. This translates, in turn, to functional immune diversification through type I and type II FcγR–mediated cellular functions. For example, Fc domain sialylation triggers conformational changes of IgG1 that enable interactions with type II FcγRs; these receptors mediate cellular functions including antiinflammatory activity or definition of thresholds for B cell selection based on B cell receptor affinity. Similarly, presence or absence of a core fucose alters type I FcγR binding of IgG1 by modulating the Fc’s affinity for FcγRIIIa, thereby altering its proinflammatory activity. How heterogeneity in IgG Fc domains contributes to human immune diversity is now being elucidated, including impacts on vaccine responses and susceptibility to disease and its sequelae during infections. Here, we discuss how Fc structures arising from sialylation and fucosylation impact immunity, focusing on responses to vaccination and infection. We also review work defining individual differences in Fc glycosylation, regulation of Fc glycosylation, and clinical implications of these pathways.

Authors

Taia T. Wang, Jeffrey V. Ravetch

×

Figure 2

Sialylated immune complexes trigger high-affinity antibody production through B cell CD23 engagement.

Options: View larger image (or click on image) Download as PowerPoint
Sialylated immune complexes trigger high-affinity antibody production th...
Influenza vaccination triggers production of sialylated anti–HA IgGs by plasmablasts. Immune complexes form and are fixed on specialized antigen-presenting cells called follicular dendritic cells (FDCs) within the germinal center. Coengagement of CD23 with the B cell receptor by sialylated HA immune complexes induces increased expression of the inhibitory FcγRIIb, resulting in selection of higher-affinity B cells.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts