As the opioid addiction crisis reaches epidemic levels, the identification of opioid analgesics that lack abuse potential may provide a path to safer treatment of chronic pain. Preclinical studies have demonstrated that galanin affects physical dependence and rewarding actions associated with morphine. In the brain and periphery, galanin and opioids signal through their respective GPCRs, GalR1–3 and the μ-opioid receptor (MOR). In this issue of the JCI, Cai and collaborators reveal that heteromers between GalR1 and MOR in the rat ventral tegmental area attenuate the potency of methadone, but not other opioids, in stimulating the dopamine release that produces euphoria. These studies help us understand why some synthetic opioids, such as methadone, do not trigger the release of dopamine in the mesolimbic system but still possess strong analgesic properties.
Randal A. Serafini, Venetia Zachariou
Usage data is cumulative from January 2020 through January 2021.
Usage | JCI | PMC |
---|---|---|
Text version | 572 | 39 |
94 | 46 | |
Citation downloads | 22 | 0 |
Totals | 688 | 85 |
Total Views | 773 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.