Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Transition metals redox: reviving an old plot for diabetic vascular disease
Vincent M. Monnier
Vincent M. Monnier
Published April 1, 2001
Citation Information: J Clin Invest. 2001;107(7):799-801. https://doi.org/10.1172/JCI12635.
View: Text | PDF
Commentary

Transition metals redox: reviving an old plot for diabetic vascular disease

  • Text
  • PDF
Abstract

Authors

Vincent M. Monnier

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Proposed sequence of events leading to hydroxyl radical–mediated protein...
Proposed sequence of events leading to hydroxyl radical–mediated protein damage in early atherosclerosis in diabetes. The data from Pennathur et al. (16) show a strong relationship between hydroxyl radical damage and hemoglobin glycation. Because these authors found no evidence for increased nitration-mediated damage, it appears that formation of the initial lesion does not involve inflammatory cells. A likely scenario involves increased glycation and the formation of the redox-active center due to the formation of carboxymethyl-lysine (CML) and carboxyethyl-lysine (CEL), which can bind redox-active copper and perhaps iron. Amadori products and ceruloplasmin (not shown) are also expected to be potent precursors of oxidative damage. Hyperglycemia-catalyzed superoxide formation from mitochondrial and cytoplasmic sources is expected to initiate the lipoxidation cascade and release of glyoxal, a potent CML precursor. PUFA, polyunsaturated fatty acid.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts