Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Cellular therapy against public neoantigens
Paul M. Armistead
Paul M. Armistead
Published January 14, 2019
Citation Information: J Clin Invest. 2019;129(2):506-508. https://doi.org/10.1172/JCI126116.
View: Text | PDF
Commentary

Cellular therapy against public neoantigens

  • Text
  • PDF
Abstract

Neoantigen-targeted therapies have typically been based upon personalized neoantigen-specific vaccines; however, in this issue of JCI, van der Lee et al. describe the development of a potential cellular immunotherapy targeting a “public” neoantigen derived from nucleophosmin 1 (NPM1), which is mutated in approximately 30% of acute myeloid leukemias (AMLs). The authors use reverse immunology to predict, and biochemically confirm, NPM1-derived neoepitopes (ΔNPM1) and then generate high-avidity T cell clones and retrovirally transduced T cell populations that kill NPM1-mutated AML. This study provides a general approach to adoptive cellular therapy that can be applied to targeting other tumors with public neoantigens.

Authors

Paul M. Armistead

×

Figure 1

Developing neoantigen-specific T cells by reverse immunology.

Options: View larger image (or click on image) Download as PowerPoint
Developing neoantigen-specific T cells by reverse immunology.
For a “pub...
For a “public” neoantigen, a common mutation is identified. In the case of NPM1, this is a 4 base pair insertion. The translational result of the mutation is predicted, which for NPM1 is an out of frame amino acid sequence at the C terminus. The new peptide sequences are tested for predicted binding to an HLA type of interest to determine the most likely neoepitopes. Targeted mass spectrometry is performed to compare peptide epitope sequences from a biological sample (e.g., cell line or primary tumor) to a synthetic peptide standard. High-avidity antigen-specific T cell clones are generated, and their T cell receptors are sequenced. The T cell receptor is incorporated into a viral vector into subsequent generation of T cell populations for use in ACT.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts