Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

A simple but profound mutation in mouse DNA polymerase ε drives tumorigenesis
Thomas A. Kunkel
Thomas A. Kunkel
Published August 20, 2018
Citation Information: J Clin Invest. 2018;128(9):3754-3756. https://doi.org/10.1172/JCI123021.
View: Text | PDF
Commentary

A simple but profound mutation in mouse DNA polymerase ε drives tumorigenesis

  • Text
  • PDF
Abstract

Over 40 years ago, Loeb and colleagues proposed that errors in DNA replication produce a mutator phenotype that is involved in generating the multiple mutations required for tumor development. In this issue of the JCI, Li, Castrillon, and colleagues describe a mouse model containing a single base change in the gene encoding replicative DNA polymerase ε (POLE) that mimics the “ultramutator” phenotype recently reported in many human tumors. Their seminal accomplishment validates Loeb’s hypothesis and the use of mutational signatures to understand the origins and potentially the treatment of human tumors, and it offers an exciting opportunity to further explore the mechanisms responsible for normal DNA replication fidelity and their perturbations.

Authors

Thomas A. Kunkel

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 390 37
PDF 133 13
Figure 97 0
Citation downloads 97 0
Totals 717 50
Total Views 767

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts