Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Usage Information

Beyond the brain: do peripheral mechanisms develop impaired awareness of hypoglycemia?
Elizabeth R. Seaquist
Elizabeth R. Seaquist
Published August 6, 2018
Citation Information: J Clin Invest. 2018;128(9):3739-3741. https://doi.org/10.1172/JCI122449.
View: Text | PDF
Commentary

Beyond the brain: do peripheral mechanisms develop impaired awareness of hypoglycemia?

  • Text
  • PDF
Abstract

The mechanisms responsible for the development of the impaired awareness of hypoglycemia often seen in insulin-treated patients with diabetes remain uncertain, but cerebral adaptations to recurrent hypoglycemia are frequently hypothesized. In this issue of the JCI, Ma et al. demonstrate that neuropeptide Y (NPY) secretion from adrenal chromaffin cells persists during exposure to recurrent hypoglycemia and activation of the sympathetic nerves at the same time that epinephrine secretion is reduced. This results in the inhibition of tyrosine hydroxylase, the rate-limiting enzyme for catecholamine synthesis. These observations suggest that a peripheral mechanism downstream from the brain contributes to the development of impaired awareness of hypoglycemia.

Authors

Elizabeth R. Seaquist

×

Usage data is cumulative from March 2020 through March 2021.

Usage JCI PMC
Text version 500 66
PDF 83 76
Figure 206 0
Supplemental data 0 5
Citation downloads 7 0
Totals 796 147
Total Views 943

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts