Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Molecular imaging of fibrosis: recent advances and future directions
Sydney B. Montesi, … , Bryan C. Fuchs, Peter Caravan
Sydney B. Montesi, … , Bryan C. Fuchs, Peter Caravan
Published January 2, 2019
Citation Information: J Clin Invest. 2019;129(1):24-33. https://doi.org/10.1172/JCI122132.
View: Text | PDF
Review

Molecular imaging of fibrosis: recent advances and future directions

  • Text
  • PDF
Abstract

Fibrosis, the progressive accumulation of connective tissue that occurs in response to injury, causes irreparable organ damage and may result in organ failure. The few available antifibrotic treatments modify the rate of fibrosis progression, but there are no available treatments to reverse established fibrosis. Thus, more effective therapies are urgently needed. Molecular imaging is a promising biomedical methodology that enables noninvasive visualization of cellular and subcellular processes. It provides a unique means to monitor and quantify dysregulated molecular fibrotic pathways in a noninvasive manner. Molecular imaging could be used for early detection, disease staging, and prognostication, as well as for assessing disease activity and treatment response. As fibrotic diseases are often molecularly heterogeneous, molecular imaging of a specific pathway could be used for patient stratification and cohort enrichment with the goal of improving clinical trial design and feasibility and increasing the ability to detect a definitive outcome for new therapies. Here we review currently available molecular imaging probes for detecting fibrosis and fibrogenesis, the active formation of new fibrous tissue, and their application to models of fibrosis across organ systems and fibrotic processes. We provide our opinion as to the potential roles of molecular imaging in human fibrotic diseases.

Authors

Sydney B. Montesi, Pauline Désogère, Bryan C. Fuchs, Peter Caravan

×

Figure 2

Schematic representation of wound-healing responses resulting in fibrosis.

Options: View larger image (or click on image) Download as PowerPoint
Schematic representation of wound-healing responses resulting in fibrosi...
(A) Tissue injury occurs, resulting in cell death and influx of immune cells. Resident and recruited macrophages migrate to the area of injury. (B) Tissue injury also results in increased endothelial permeability (i.e., vascular leak), and activation of the coagulation cascade with formation of a fibrin clot. (C) Fibroblasts migrate to the area of injury. (D) Recruited fibroblasts become activated and differentiate into myofibroblasts. (E) Formation of a provisional extracellular matrix develops and cross-linking occurs. In the setting of normal wound healing, tissue regeneration occurs. During fibrosis, excessive matrix accumulation occurs instead, resulting in organ damage. Available molecular probes are noted by the specific wound-healing response they target or for LPA and αvβ6, the wound-healing responses they activate. Some probes target or activate more than one wound-healing process. Adapted with permission from the American Journal of Respiratory and Critical Care Medicine (ref. 12), copyright 2018, American Thoracic Society.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts